
On the possibility of a shared
event display code base for Halls

B & D

Outline

1. Event Display Philosophy
2. What do we have now?
3. Web Visualization via FLEX

1. Philosophy

• The primary role of an event display is not
to visualize the detector.

• The primary role of an event display is to
debug and diagnose the detector.

• In support of its primary role, unfaithful (to
the geometry) displays are often more
useful that faithful displays. Especially
when there is a lot of “air.”

2. What do we have now?
A solution based on three JAVA projects:

1. jevio†—reads evio (event) files and maps the events
onto a tree data structure. Dependencies: none.

2. bCNU—Framework for creating a MDI (Multiple
Document Interface) application and for distributing
events to listeners. Knows nothing about any specific
detector. Dependencies: jevio.

3. ced—the event display, magnetic field reader, and
particle swimmer for CLAS 12.0 GeV. Dependencies:
jevio and bCNU

– Implication: keep jevio, bCNU—replace ced with
ded (“dead?”)

†jevio is no longer a Hall B project but a proper JLab DAQ project. Which means:
don’t call us to report bugs.

Or:

jevio

bCNU

ced

jevio

bCNU

ded

What does ced know that bCNU doesn’t? To 1st order:
ced knows about 1) CLAS detector geometry and 2) the
CLAS event format.

Rough breakdown

• bCNU 57%
• ced 26%
• jevio 17%

• Note: roughly 20% of the ced project is devoted
to magnetic fields viz., reading, interpolating,
and swimming. If we agree on a magnetic field
(binary) format, all magnetic field related
code could be moved to bCNU and shared.

bCNU packages
While there are a couple of obscure

packages (e.g., lund, which is a
database of Lund particles) most are
~self-explanatory.

In a nutshell, bCNU provides:

1) A MDI Framework
2) Support for the windows on that

framework (called views)
3) Support for items on the views

(called items)
4) Support for mouseover feedback

(including headsup display)
5) Layering
6) XML reading/writing/visualization
7) Evio events
8) Menus, toolbars, dialogs, etc
9) Some useful components (check box

arrays, color scales)
10)Possibly magnetic field?

E.g., ced

Ced: defines the drift chamber “item” based on bCNU base class. Everything
else comes from bCNU.

(cont.)
Headsup display (for mouseover feedback) conserves screen real estate.

(cont.)

3. Web Visualization

• We want a full-featured, fully interactive ced to
operate in a browser. From anywhere in the
world. To see live events in real-time. With
minimal bandwidth penalty. To offer an
unprecedented level of remote monitoring for
our collaboration.

• The same technology could be used for other
monitoring/analysis/simulation.

• The technology for doing this is, as they say,
upon us.

Rich Internet Applications (aka Web 2.0)

Higgs
(from
future)

1. Browser delivers
virtual machine
and provides
real estate.

2. Compiled
application runs
in virtual
machine.

3. Virtual machine,
not browser,
renders the
display.

RIA Candidate Technologies
• Adobe FLEX (2004.) Uses FLASH player as

virtual machine. Approximately 98 percent
penetration across all platforms.†

• Microsoft Silverlight (2007.) So far, little
penetration.

• SUN JavaFX (little chance to succeed.)
• In Web 1.0 you programmed to the browser

(IE, Firefox, Chrome, etc.) Here you program
to a single virtual platform. In Web1.0 the
closest technology was JAVA applets. FAIL.

†This is the number one reason for adopting FLEX. Almost nobody will have to
download anything.

FLEX vs. JavaScript/AJAX

†If you are Google you can work miracles like drag ‘n drop. Mere mortals cannot.

• Interpreted
• Browser dependent
• Can be disabled!
• Data transfer: text over
HTTP
• Request/Poll/Stateless
(uses tricks like cookies to
mimic statefulness.)
• Page based
• Limited, inextensible
controls†

• Compiled ActionScript (fully
OO)
• Browser agnostic
• Multiple transfer protocols
including binary at 10×
speed of XML or SOAP
• Pub/Sub/Stateful
• Data centric
• Powerful, extensible
controls including charts,
tables, drag ‘n drop

OLD: JavaScript/AJAX NEW: FLEX

FLEX Virtual Machine
• The ubiquitous FLASH player

– Powerful, small, fast, multithreaded
– Windows, MAC OS, Unix, Linux, Phones, PDAs’

• Why FLEX instead of FLASH?
– FLASH has an animation paradigm (timelines,

layers, etc. Caters to creative types.)
– FLEX has a programming paradigm (normal OO

constructs. Welcome nerdy developers.)
– FLEX has profiling, refactoring, wizards,

graphical design, charting, data grid, etc.

FLEX Development
• Free SDK
• No runtime license cost (i.e., everyone has

flash)
• eclipse based IDE (Flex Builder) free for

students, faculty, (JLAB staff??)†

• Essentially two languages:
– MXML for the display (V in MVC—Model View

Controller paradigm)
– ActionScript for the “brains” (C in MVC)

† Probably free. Someone should try. $699 for everyone else. Bummer.

FLEX Builder (eclipse)

Data Exchange

• Most natural way is through standard Web
Services

• FLEX is Web Service Aware out of the box
• Also possible: higher level server side

frameworks (e.g., GRAILS, CLARA). What do
they provide? To first order they handle all the
annoying plumbing involved in using web
services, including (GRAILS) mapping local
objects onto remote objects.

Proposed Architecture
• The basic idea is to use the stand-alone

code in the backend as a headless server
• A map server (like Google maps) takes a

request and provides an image on top of
which other things may be drawn

• The event display server would do the
same, but with a detector view rather than
a map

Architecture Cartoon

Geometry

Mag Field Events

Simulation

Headless
JAVA

Event Display

CLAS Web Service
Farm Plantation

GRAILS Web Application

FLEX
Plugin†

†FLEX plugin for GRAILS already exists

CMsg
Proxy

Conclusion (regarding Web
Visualization)

• We can preserve existing bCNU/ced code base
• The stand-alone event display has no technical

risk
• The FLEX technology is a minor technical risk, not

on the critical path, and independent of the stand-
alone application.

• The GRAILS backend is a somewhat greater
technical risk, and alternatives should be explored

• The benefits are legion: no deployment, extremely
powerful remote monitoring, no meaningful
bandwidth hit.

	On the possibility of a shared event display code base for Halls B & D
	Outline
	1. Philosophy
	2. What do we have now?
	Or:
	Rough breakdown
	bCNU packages
	E.g., ced
	(cont.)
	(cont.)
	3. Web Visualization
	Rich Internet Applications (aka Web 2.0)
	RIA Candidate Technologies
	FLEX vs. JavaScript/AJAX
	FLEX Virtual Machine
	FLEX Development
	FLEX Builder (eclipse)
	Data Exchange
	Proposed Architecture
	Architecture Cartoon
	Conclusion (regarding Web Visualization)

